稠密连接网络(DenseNet)

ResNet极大地改变了如何参数化深层网络中函数的观点。 稠密连接网络(DenseNet) :cite:Huang.Liu.Van-Der-Maaten.ea.2017在某种程度上是ResNet的逻辑扩展。让我们先从数学上了解一下。

从ResNet到DenseNet

回想一下任意函数的泰勒展开式(Taylor expansion),它把这个函数分解成越来越高阶的项。在$x$接近0时,

$$f(x) = f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \ldots.$$

同样,ResNet将函数展开为

$$f(\mathbf{x}) = \mathbf{x} + g(\mathbf{x}).$$

也就是说,ResNet将$f$分解为两部分:一个简单的线性项和一个复杂的非线性项。 那么再向前拓展一步,如果我们想将$f$拓展成超过两部分的信息呢? 一种方案便是DenseNet。

ResNet(左)与 DenseNet(右)在跨层连接上的主要区别:使用相加和使用连结。 :label:fig_densenet_block

如 :numref:fig_densenet_block所示,ResNet和DenseNet的关键区别在于,DenseNet输出是连接(用图中的$[,]$表示)而不是如ResNet的简单相加。 因此,在应用越来越复杂的函数序列后,我们执行从$\mathbf{x}$到其展开式的映射:

$$\mathbf{x} \to \left[ \mathbf{x}, f_1(\mathbf{x}), f_2([\mathbf{x}, f_1(\mathbf{x})]), f_3([\mathbf{x}, f_1(\mathbf{x}), f_2([\mathbf{x}, f_1(\mathbf{x})])]), \ldots\right].$$

最后,将这些展开式结合到多层感知机中,再次减少特征的数量。 实现起来非常简单:我们不需要添加术语,而是将它们连接起来。 DenseNet这个名字由变量之间的“稠密连接”而得来,最后一层与之前的所有层紧密相连。 稠密连接如 :numref:fig_densenet所示。

稠密连接。 :label:fig_densenet

稠密网络主要由2部分构成:稠密块(dense block)和过渡层(transition layer)。 前者定义如何连接输入和输出,而后者则控制通道数量,使其不会太复杂。

(稠密块体)

DenseNet使用了ResNet改良版的“批量规范化、激活和卷积”架构(参见 :numref:sec_resnet中的练习)。 我们首先实现一下这个架构。

from d2l import mxnet as d2l
from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()

def conv_block(num_channels):
    blk = nn.Sequential()
    blk.add(nn.BatchNorm(),
            nn.Activation('relu'),
            nn.Conv2D(num_channels, kernel_size=3, padding=1))
    return blk
#@tab pytorch
from d2l import torch as d2l
import torch
from torch import nn

def conv_block(input_channels, num_channels):
    return nn.Sequential(
        nn.BatchNorm2d(input_channels), nn.ReLU(),
        nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))
#@tab tensorflow
from d2l import tensorflow as d2l
import tensorflow as tf

class ConvBlock(tf.keras.layers.Layer):
    def __init__(self, num_channels):
        super(ConvBlock, self).__init__()
        self.bn = tf.keras.layers.BatchNormalization()
        self.relu = tf.keras.layers.ReLU()
        self.conv = tf.keras.layers.Conv2D(
            filters=num_channels, kernel_size=(3, 3), padding='same')

        self.listLayers = [self.bn, self.relu, self.conv]

    def call(self, x):
        y = x
        for layer in self.listLayers.layers:
            y = layer(y)
        y = tf.keras.layers.concatenate([x,y], axis=-1)
        return y
#@tab paddle
from d2l import paddle as d2l
import warnings
warnings.filterwarnings("ignore")
import paddle
import paddle.nn as nn

def conv_block(input_channels, num_channels):
    return nn.Sequential(
        nn.BatchNorm2D(input_channels), nn.ReLU(),
        nn.Conv2D(input_channels, num_channels, kernel_size=3, padding=1))

一个稠密块由多个卷积块组成,每个卷积块使用相同数量的输出通道。 然而,在前向传播中,我们将每个卷积块的输入和输出在通道维上连结。

class DenseBlock(nn.Block):
    def __init__(self, num_convs, num_channels, **kwargs):
        super().__init__(**kwargs)
        self.net = nn.Sequential()
        for _ in range(num_convs):
            self.net.add(conv_block(num_channels))

    def forward(self, X):
        for blk in self.net:
            Y = blk(X)
            # 连接通道维度上每个块的输入和输出
            X = np.concatenate((X, Y), axis=1)
        return X
#@tab pytorch
class DenseBlock(nn.Module):
    def __init__(self, num_convs, input_channels, num_channels):
        super(DenseBlock, self).__init__()
        layer = []
        for i in range(num_convs):
            layer.append(conv_block(
                num_channels * i + input_channels, num_channels))
        self.net = nn.Sequential(*layer)

    def forward(self, X):
        for blk in self.net:
            Y = blk(X)
            # 连接通道维度上每个块的输入和输出
            X = torch.cat((X, Y), dim=1)
        return X
#@tab tensorflow
class DenseBlock(tf.keras.layers.Layer):
    def __init__(self, num_convs, num_channels):
        super(DenseBlock, self).__init__()
        self.listLayers = []
        for _ in range(num_convs):
            self.listLayers.append(ConvBlock(num_channels))

    def call(self, x):
        for layer in self.listLayers.layers:
            x = layer(x)
        return x
#@tab paddle
class DenseBlock(nn.Layer):
    def __init__(self, num_convs, input_channels, num_channels):
        super(DenseBlock, self).__init__()
        layer = []
        for i in range(num_convs):
            layer.append(
                conv_block(num_channels * i + input_channels, num_channels))
        self.net = nn.Sequential(*layer)

    def forward(self, X):
        for blk in self.net:
            Y = blk(X)
            # 连接通道维度上每个块的输入和输出
            X = paddle.concat(x=[X, Y], axis=1)
        return X

在下面的例子中,我们[定义一个]有2个输出通道数为10的(DenseBlock)。 使用通道数为3的输入时,我们会得到通道数为$3+2\times 10=23$的输出。 卷积块的通道数控制了输出通道数相对于输入通道数的增长,因此也被称为增长率(growth rate)。

blk = DenseBlock(2, 10)
blk.initialize()
X = np.random.uniform(size=(4, 3, 8, 8))
Y = blk(X)
Y.shape
#@tab pytorch
blk = DenseBlock(2, 3, 10)
X = torch.randn(4, 3, 8, 8)
Y = blk(X)
Y.shape
#@tab tensorflow
blk = DenseBlock(2, 10)
X = tf.random.uniform((4, 8, 8, 3))
Y = blk(X)
Y.shape
#@tab paddle
blk = DenseBlock(2, 3, 10)
X = paddle.randn([4, 3, 8, 8])
Y = blk(X)
Y.shape

[过渡层]

由于每个稠密块都会带来通道数的增加,使用过多则会过于复杂化模型。 而过渡层可以用来控制模型复杂度。 它通过$1\times 1$卷积层来减小通道数,并使用步幅为2的平均汇聚层减半高和宽,从而进一步降低模型复杂度。

def transition_block(num_channels):
    blk = nn.Sequential()
    blk.add(nn.BatchNorm(), nn.Activation('relu'),
            nn.Conv2D(num_channels, kernel_size=1),
            nn.AvgPool2D(pool_size=2, strides=2))
    return blk
#@tab pytorch
def transition_block(input_channels, num_channels):
    return nn.Sequential(
        nn.BatchNorm2d(input_channels), nn.ReLU(),
        nn.Conv2d(input_channels, num_channels, kernel_size=1),
        nn.AvgPool2d(kernel_size=2, stride=2))
#@tab tensorflow
class TransitionBlock(tf.keras.layers.Layer):
    def __init__(self, num_channels, **kwargs):
        super(TransitionBlock, self).__init__(**kwargs)
        self.batch_norm = tf.keras.layers.BatchNormalization()
        self.relu = tf.keras.layers.ReLU()
        self.conv = tf.keras.layers.Conv2D(num_channels, kernel_size=1)
        self.avg_pool = tf.keras.layers.AvgPool2D(pool_size=2, strides=2)

    def call(self, x):
        x = self.batch_norm(x)
        x = self.relu(x)
        x = self.conv(x)
        return self.avg_pool(x)
#@tab paddle
def transition_block(input_channels, num_channels):
    return nn.Sequential(
        nn.BatchNorm2D(input_channels), nn.ReLU(),
        nn.Conv2D(input_channels, num_channels, kernel_size=1),
        nn.AvgPool2D(kernel_size=2, stride=2))

对上一个例子中稠密块的输出[使用]通道数为10的[过渡层]。 此时输出的通道数减为10,高和宽均减半。

blk = transition_block(10)
blk.initialize()
blk(Y).shape
#@tab pytorch, paddle
blk = transition_block(23, 10)
blk(Y).shape
#@tab tensorflow
blk = TransitionBlock(10)
blk(Y).shape

[DenseNet模型]

我们来构造DenseNet模型。DenseNet首先使用同ResNet一样的单卷积层和最大汇聚层。

net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),
        nn.BatchNorm(), nn.Activation('relu'),
        nn.MaxPool2D(pool_size=3, strides=2, padding=1))
#@tab pytorch
b1 = nn.Sequential(
    nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
    nn.BatchNorm2d(64), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
#@tab tensorflow
def block_1():
    return tf.keras.Sequential([
       tf.keras.layers.Conv2D(64, kernel_size=7, strides=2, padding='same'),
       tf.keras.layers.BatchNormalization(),
       tf.keras.layers.ReLU(),
       tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')])
#@tab paddle
b1 = nn.Sequential(
    nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3),
    nn.BatchNorm2D(64), nn.ReLU(),
    nn.MaxPool2D(kernel_size=3, stride=2, padding=1))

接下来,类似于ResNet使用的4个残差块,DenseNet使用的是4个稠密块。 与ResNet类似,我们可以设置每个稠密块使用多少个卷积层。 这里我们设成4,从而与 :numref:sec_resnet的ResNet-18保持一致。 稠密块里的卷积层通道数(即增长率)设为32,所以每个稠密块将增加128个通道。

在每个模块之间,ResNet通过步幅为2的残差块减小高和宽,DenseNet则使用过渡层来减半高和宽,并减半通道数。

# num_channels为当前的通道数
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]

for i, num_convs in enumerate(num_convs_in_dense_blocks):
    net.add(DenseBlock(num_convs, growth_rate))
    # 上一个稠密块的输出通道数
    num_channels += num_convs * growth_rate
    # 在稠密块之间添加一个转换层,使通道数量减半
    if i != len(num_convs_in_dense_blocks) - 1:
        num_channels //= 2
        net.add(transition_block(num_channels))
#@tab pytorch
# num_channels为当前的通道数
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
blks = []
for i, num_convs in enumerate(num_convs_in_dense_blocks):
    blks.append(DenseBlock(num_convs, num_channels, growth_rate))
    # 上一个稠密块的输出通道数
    num_channels += num_convs * growth_rate
    # 在稠密块之间添加一个转换层,使通道数量减半
    if i != len(num_convs_in_dense_blocks) - 1:
        blks.append(transition_block(num_channels, num_channels // 2))
        num_channels = num_channels // 2
#@tab tensorflow
def block_2():
    net = block_1()
    # num_channels为当前的通道数
    num_channels, growth_rate = 64, 32
    num_convs_in_dense_blocks = [4, 4, 4, 4]

    for i, num_convs in enumerate(num_convs_in_dense_blocks):
        net.add(DenseBlock(num_convs, growth_rate))
        # 上一个稠密块的输出通道数
        num_channels += num_convs * growth_rate
        # 在稠密块之间添加一个转换层,使通道数量减半
        if i != len(num_convs_in_dense_blocks) - 1:
            num_channels //= 2
            net.add(TransitionBlock(num_channels))
    return net
#@tab paddle
# num_channels为当前的通道数
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
blks = []
for i, num_convs in enumerate(num_convs_in_dense_blocks):
    blks.append(DenseBlock(num_convs, num_channels, growth_rate))
    # 上一个稠密块的输出通道数
    num_channels += num_convs * growth_rate
    # 在稠密块之间添加一个转换层,使通道数量减半
    if i != len(num_convs_in_dense_blocks) - 1:
        blks.append(transition_block(num_channels, num_channels // 2))
        num_channels = num_channels // 2

与ResNet类似,最后接上全局汇聚层和全连接层来输出结果。

net.add(nn.BatchNorm(),
        nn.Activation('relu'),
        nn.GlobalAvgPool2D(),
        nn.Dense(10))
#@tab pytorch
net = nn.Sequential(
    b1, *blks,
    nn.BatchNorm2d(num_channels), nn.ReLU(),
    nn.AdaptiveAvgPool2d((1, 1)),
    nn.Flatten(),
    nn.Linear(num_channels, 10))
#@tab tensorflow
def net():
    net = block_2()
    net.add(tf.keras.layers.BatchNormalization())
    net.add(tf.keras.layers.ReLU())
    net.add(tf.keras.layers.GlobalAvgPool2D())
    net.add(tf.keras.layers.Flatten())
    net.add(tf.keras.layers.Dense(10))
    return net
#@tab paddle
net = nn.Sequential(
    b1, *blks, 
    nn.BatchNorm2D(num_channels), nn.ReLU(),
    nn.AdaptiveMaxPool2D((1, 1)), 
    nn.Flatten(),
    nn.Linear(num_channels, 10))

[训练模型]

由于这里使用了比较深的网络,本节里我们将输入高和宽从224降到96来简化计算。

#@tab all
lr, num_epochs, batch_size = 0.1, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

小结

  • 在跨层连接上,不同于ResNet中将输入与输出相加,稠密连接网络(DenseNet)在通道维上连结输入与输出。
  • DenseNet的主要构建模块是稠密块和过渡层。
  • 在构建DenseNet时,我们需要通过添加过渡层来控制网络的维数,从而再次减少通道的数量。

练习

  1. 为什么我们在过渡层使用平均汇聚层而不是最大汇聚层?
  2. DenseNet的优点之一是其模型参数比ResNet小。为什么呢?
  3. DenseNet一个诟病的问题是内存或显存消耗过多。
    1. 真的是这样吗?可以把输入形状换成$224 \times 224$,来看看实际的显存消耗。
    2. 有另一种方法来减少显存消耗吗?需要改变框架么?
  4. 实现DenseNet论文 :cite:Huang.Liu.Van-Der-Maaten.ea.2017表1所示的不同DenseNet版本。
  5. 应用DenseNet的思想设计一个基于多层感知机的模型。将其应用于 :numref:sec_kaggle_house中的房价预测任务。

:begin_tab:mxnet Discussions :end_tab:

:begin_tab:pytorch Discussions :end_tab:

:begin_tab:tensorflow Discussions :end_tab:

:begin_tab:paddle Discussions :end_tab: